
      EASYNET 1.81
Copyright © 1994-1995 by Patrick Lassalle.      ALL RIGHTS RESERVED   

IDDN.FR.001.110020.01.R.P.1994.000.10600

EasyNet is a Custom Control for Microsoft Visual Basic for Windows (*). It lets
you quickly build flowchart-enabled applications (network, workflow,
database, etc...).

Why EasyNet?
Quick Start
Overview
Properties
Events
Installation
Registration
Order Form
License Agreement
Support
Acknowledgments

 (*) Microsoft is a registered trademark. Windows and Visual Basic are trademarks of Microsoft Corporation.

Quick Start
- Add the EasyNet VBX to your project by selecting "Add File..." from
Visual Basic's "File" menu. If you have not a license file, an "About" dialog
box appears and you have to click Ok.
- Drag an EasyNet control from the toolbox to your form.
- Launch the program by selecting "Start" from the "Run" menu (or do F5).
- Draw a node: bring the mouse cursor into the EasyNet control, press the
left button, move the mouse and release the left button. You have created
an elliptic node. This node is selected: that's why 9 handles (little squares)
are displayed.

The handle at the center of the node is used to draw a link. The 8 others allow to resize the
node. If you want to move the node you bring the mouse cursor into the node, press the
left button, move the mouse and release the left button.
- Draw a second node...(same method)

- Draw a link: bring the mouse cursor into the handle at the center of the selected node,
press the left button, move the mouse towards the other node. When the mouse cursor is
into the other node, release the left button. The link has been created. And it is selected
since a handle is displayed at the center of this link.

- You may stretch this link: bring the mouse cursor into the link handle, press the left
button, move the mouse and release the left button. You have created a new link segment. It
has 3 handles allowing you to add or remove segments. (The handle at the intersection of
two segments allows you to remove a segment :    you move it with the mouse so that the
two segments are aligned and when these two segments are approximately aligned, release
the left button).

- Now, you may return to the Visual Basic design-time mode in order to change
EasyNet control properties. For instance you may change the node filling color with FillColor
property, the node shape (Shape property), the drawing color (DrawColor property). You may
allow multiselection (MultiSel and SelectMode properties), add scrollbars (ScrollBars
property), etc...
You may also create items programmaticaly with EditAction property. Or
copy the diagram to clipboard as a metafile, save its image to a file as a
metafile, zoom the diagram, etc....
...Well, it is very easy, isnt'it?

Why EasyNet?
If you need flowcharting features
If you want to implement a workflow applications
If you wish to draw organizational charts
If you have to draw communication networks
If you plan to draw state transitions diagrams
If you need to display relationships between entities (database diagrams)

then EasyNet is indispensable. GET IT!!
It allows you to draw diagrams interactively or programmaticaly in minutes.
EasyNet is powerful, opened and customizable:

· allows to associate your own data to each item (node or link).
· allows navigation.
· offers many properties allowing you to "customize" your diagramming

application.
· is a VBX 1.0 level control. Therefore, it can be used in other host

environments.
· includes Royalty free runtime distribution
· only $119 !!

Overview
This Custom Control allows to draw network diagrams. A network diagram is

a set of nodes that can be linked. So an EasyNet control contains items that
can be nodes or links. You can associate data to each item and you can
navigate in the network diagram.
 Drawings can be made interactively with the mouse or programmaticaly.

See Quick Start to see how to interactively draw nodes, resize nodes, move
nodes, stretch links, select one item or multiselect items.
By exploring following topics, you'll discover all features of the EasyNet

control.
Items
Drawing
Metafile support
User Data Association
Navigation
Capabilities
Saving/Loading
Performance tuning
Limits

Items
Items are nodes or links. Two nodes can be linked with a link. A link cannot

exist without its origin and destination nodes. If one of these two nodes is
deleted, the link is also deleted.
You can make an item be the current one either with the mouse or with Item

property, allowing you to work with it, get or set its properties. You can also
select several items with the mouse if multiselection is allowed (in such a
case MultiSel and SelectMode properties are true).

IsLink property allows to know if current item is a link or not.
Sleeping property allows to specify if an item is active or not. If it sleeps, the

user cannot interactively make it current or selected.
Owner property allows to define an owner node for a node. When a node is

created, it is free and its Owner property is 0. But if you set its Owner
property, then the node will have to follow its owner node when it will be
interactively moved with the mouse by the user. A node may have several
owned nodes that follow it. And if those owned nodes are sleeping, they may
be used to implement stubs or pins inside the owner node. Their role is just
to receive links.
A link may have several segments but the first segment is always directed

towards the center of the origin node and the last segment is always directed
towards the center of the destination node. However, this behaviour may be
changed with Owner property.
You can create items, delete items and do other edit actions (like copying

the network diagram onto the clipboard in a metafile format) with EditAction
property.
ItemZOrder places current item at the front or back of the z-order.

Example:If current item is a link, make its origin node be red.

Dim curLink&

If Net1.IsLink = True Then
 ' Save current item
 curLink = Net1.Item

 ' Make origin node be the current item
 ' in order to work with it
 Net1.Item = Net1.Org

 ' Change node filling color
 Net1.FillColor = RGB(255, 0, 0)

 ' Restore current item
 Net1.Item = curLink
End If

Drawing
You can change colors, styles and shapes of each item:
· X1, X2, Y1, Y2 properties allows to set or get position

and size of each item.
· Picture property allows to associate a picture to each node.
· AutoSize property allows to adjust node size to picture size or adjust

picture size to node size.
· Shape property allows to specify a shape for a node.
· DrawColor, DrawStyle and DrawWidth

properties    allow to specify the color and width of the pen used
to draw nodes or links.

· FillColor property allows to specify the color used inside a node.
· ForeColor property allows to specify the item text color.
· Text property associates a string that is displayed inside the node at a

position
depending on Alignment property (if item is a node) or near the link
(if item is a link).
The EasyNet control maintains the memory for the strings associated to
items.

· Alignment sets or returns the alignment of text in a node.
· PointCount, PointX, PointY    properties allow

to have a link composed of several segments.
· Oriented property specifies if a link is oriented or not.

If the link is oriented, it has an arrowhead.
· LinkHead property the arrowhead shape for a link.
· Transparent property specifies if a node is transparent or not.
· Hiding property specifies if an item (node or link) is visible or not.
· You can create items, delete items and do other edit actions (like

copying
the network diagram onto the clipboard in a metafile format) with
EditAction property.

Example:
Creates 3 nodes and 2 links. Each node has a text. Two are rectangles and

the other is an ellipse. The links are oriented.

Sub Exercice ()
 Dim n1&, n2&, n3&

 ' Cause current item to be null
 ' Therefore, following property settings apply
 ' to next created items.
 Net1.Item = 0
 Net1.Shape = 1 'Default shape = Rectangle.
 Net1.FillColor = RGB(255, 255, 192) 'Default Fill color
 Net1.DrawColor = RGB(0, 0, 128) 'Default Draw color
 Net1.Oriented = True 'Oriented links

 ' Create first node. It has a rectangular shape.
 Net1.EditAction = 0

 Net1.X1 = 100
 Net1.Y1 = 100
 Net1.X2 = 2000
 Net1.Y2 = 500
 Net1.Text = "A network to implement ?"
 n1 = Net1.Item

 ' Create second node. It has a rectangular shape.
 Net1.EditAction = 0
 Net1.X1 = 2200
 Net1.Y1 = 300
 Net1.X2 = 3600
 Net1.Y2 = 700
 Net1.Text = "FlowChart needs ?"
 n2 = Net1.Item

 ' Create a third node. No shape is indicated.
 ' Therefore its shape is the default one: ellipse.
 Net1.EditAction = 0
 Net1.Shape = 0 ' Ellipse
 Net1.X1 = 1100
 Net1.Y1 = 1500
 Net1.X2 = 3000
 Net1.Y2 = 2000
 Net1.Text = "Use EasyNet.vbx !!"
 n3 = Net1.Item

 ' Create first link
 Net1.Org = n1
 Net1.Dst = n3
 Net1.EditAction = 1

 ' Create second link with an extra point (2 segments)
 Net1.Org = n2
 Net1.Dst = n3
 Net1.EditAction = 1
 Net1.PointCount = 1
 Net1.PointX(0) = 3200
 Net1.PointY(0) = 1000

 ' Unselect last created link
 Net1.Item = 0
End Sub

Metafile support
EasyNet offers a perfect metafile support:

· Metafile copy: you may copy an EasyNet diagram onto the clipboard
and paste it in Window Write, in PaintBrush, Excel, Winword,
WordPerfect, in a VB picture, etc... And the result can be resized. For
instance, you may paste the metafile in a Winword document, double-
click on the picture, adjust the margins so that there's room for other
drawing objects, use the drawing tools to draw some lines, circles,
etc, close the picture, select it, copy it to the clipboard, etc...

· Metafile save: you may save an image of your EasyNet diagram on
disk as a metafile.

User Data Association
You can associate data to each item (node or link) with following properties:

· ItemTag property associates a string that is NOT displayed.
The EasyNet control maintains the memory for the tags associated to
items.
This tag can be used to store user data.

· Data property associates a long integer that can be used to store a
reference to a user data.

· Type property associates an integer that can be used to store an
identifier or a type.

Navigation
You can navigate in the network diagram with the three following properties:

· LoopAction property has to be called first in order to
indicate the type of navigation to perform.

· Then, a call to    LoopCount gives the count of items involved
in this navigation.

· Then, you get each item with LoopItem property.
LoopScope property allows to apply item property settings to all items

involved in the loop.
You can retrieve origin and destination node of a link with Org and Dst

properties.
Oriented property specifies if a link is oriented or not.
Example:
Makes color of all "out" links of all selected nodes be red.
Two calls to LoopAction property cannnot be cascaded so you have first to

memorize the selected nodes in an array in order to work with them.

Sub Exercice ()
 Dim nbnode%, nblink%, i%, j%
 Dim Node() As Long

 ' Do a loop with selected nodes
 Net1.LoopAction = 2

 ' Get count of selected nodes
 nbnode = Net1.LoopCount

 ' If no selected nodes, nothing to do
 If nbnode = 0 Then Exit Sub

 ' Memorize selected nodes in a dynamic array.
 ReDim Node(1 To nbnode)
 For i = 1 To nbnode
 Node(i) = Net1.LoopItem(i - 1)
 Next i

 ' For each node of our array...
 For i = 1 To nbnode
 ' ... makes it be the current item
 Net1.Item = Node(i)

 ' Do a loop with all leaving (out) links of the current node
 Net1.LoopAction = 4

 ' Get count of selected nodes
 nblink = Net1.LoopCount

 ' For each link leaving the current node...
 For j = 1 To nblink
 Net1.Item = Net1.LoopItem(j - 1)
 Net1.DrawColor = RGB(255, 0, 0)
 Next j
 Next i

 ' Don't forget to delete the array
 Erase Node
End Sub

Capabilities
Following properties allow to set capabilities for an EasyNet control:

AutoScroll
CanDrawNode
CanDrawLink
CanMoveNode
CanSizeNode
CanStretchLink
CanMultiLink
DisplayHandles
DoAddLink
DoAddNode
DoChange
DoSelChange
MultiSel
ReadOnly
ScrollBars
ShowGrid
xGrid
yGrid
Zoom

Saving/Loading
Saving an EasyNet diagram is under the responsability of the VB application that

uses an EasyNet control. The ImageFile property used in conjunction with EditAction
property only allows to save an image of the EasyNet diagram. This image file can be
used by other drawing applications but it cannot be loaded up again by EasyNet.
You may see demonet1 sample that is supplied with the package in order to see a

way to save an EasyNet diagram. It is just an example. You may use another method
or/and save more or less properties for each item. You may use a sequential, a binary
or a random file format. Let us give another example using a sequential file. You may
copy this code into clipboard and paste it in one of your application modules.
Example:
' ---
' This procedure saves an EasyNet diagram in a sequential file.
' It saves:
' - the version number
' - the nodes count
' - the links count
' - every properties of each node (except Picture property)
' - every properties of each link.
'
' Picture property is not saved but you may instead manage
' a correspondance between node types and pictures. For
' instance when you load your file, your VB application knows
' that node of type 1 have one icon, nodes of type 2 have another
' icon, etc...
'
' This program is just an example to show how an EasyNet file
' may be saved to disk.
' Properties that applied to the whole diagram like FontSize or
' FontName are not saved here.
' You may proceed differently: for instance, use a binary or
' a random file and save only the properties you need for your
' application.
' You may consider this program as a starting point to write
' your EasyNet saving/loading procedures adapted to your needs.
'
' THE CODE PROVIDED HEREUNDER IS PROVIDED AS IS WITHOUT WARRANTY
' OF ANY KIND.
' ---
'
' Following type is used for loading only.
Type ItemRec
 Type As Integer
 Data As Long
 FillColor As Long
 ForeColor As Long
 DrawColor As Long
 DrawWidth As Integer
 DrawStyle As Integer
 Sleeping As Integer
 Hiding As Integer
 ItemTag As String
 Text As String

 Shape As Integer
 Transparent As Integer
 Alignment As Integer
 AutoSize As Integer
 X1 As Long
 Y1 As Long
 X2 As Long
 Y2 As Long
 Oriented As Integer
 LinkHead As Integer
 OwnerNode As Long
 SrcNode As Long
 DstNode As Long
 Points As Integer
End Type

Sub SaveEasyNetFile (Net1 As Control, Filename$)
 Dim i%, j%, length%, NodeCount%, LinkCount%, PointCount%
 Dim TextLength%, TagLength%
 Dim Text$, ItemTag$, s$, CR$
 Dim node() As Long
 Dim nodeId As Long
 Dim Owner As Long
 Dim Org As Long
 Dim Dst As Long
 Dim l As Long
 Dim ptx() As Long
 Dim pty() As Long
 Dim Item As Long

 CR = Chr$(13)

 Open Filename For Output As 1
 Print #1, "EASYNET VERSION = " + Format$(Net1.Version)

 ' Node count
 Net1.LoopAction = 0
 NodeCount = Net1.LoopCount
 Print #1, "Nodes = " + Format$(NodeCount)

 ' Link count
 Net1.LoopAction = 1
 LinkCount = Net1.LoopCount

 Print #1, "Links = " + Format$(LinkCount)

 If NodeCount = 0 Then
 Close
 Exit Sub
 End If

 ' Allocate array to store nodes identifier. This array will be used
 ' when saving links or owner nodes.
 ReDim node(1 To NodeCount)

 ' For each node, save its identifier in an array
 Net1.LoopAction = 0 ' Do a nodes loop
 For i = 1 To NodeCount
 node(i) = Net1.LoopItem(i - 1)
 Next

 '-----------
 ' Save nodes
 '-----------

 ' For each node:
 ' - make it the current one
 ' - save its properties in the file

 For i = 1 To NodeCount

 ' Make node the current item
 Net1.Item = node(i)

 ' Get text and its length
 Text = Net1.Text
 TextLength = Len(Text)

 ' Get tag and its length
 ItemTag = Net1.ItemTag
 TagLength = Len(ItemTag)

 ' Find owner
 Owner = 0
 nodeId = Net1.Owner
 For j = 1 To NodeCount
 If node(j) = nodeId Then
 Owner = j
 Exit For
 End If
 Next

 ' Save current node properties
 Print #1, "Begin Node " + Format$(i)
 Print #1, " Owner = " + Format$(Owner)
 Print #1, " Type = " + Net1.Type
 Print #1, " Data = " + Net1.Data
 Print #1, " ForeColor = " + Net1.ForeColor
 Print #1, " FillColor = " + Net1.FillColor
 Print #1, " DrawColor = " + Net1.DrawColor
 Print #1, " DrawWidth = " + Net1.DrawWidth
 Print #1, " DrawStyle = " + Net1.DrawStyle
 Print #1, " Transparent = " + Net1.Transparent
 Print #1, " Alignment = " + Net1.Alignment
 Print #1, " AutoSize = " + Net1.AutoSize
 Print #1, " Shape = " + Net1.Shape
 Print #1, " X1 = " + Net1.X1
 Print #1, " Y1 = " + Net1.Y1
 Print #1, " X2 = " + Net1.X2
 Print #1, " Y2 = " + Net1.Y2

 Print #1, " Sleeping = " + Net1.Sleeping
 Print #1, " Hiding = " + Net1.Hiding
 If TextLength > 0 Then
 s = Text
 length = InStr(s, CR)
 While length > 0
 Print #1, " Text = " + Left$(s, length - 1)
 s = Mid$(s, length + 2)
 length = InStr(s, CR)
 Wend
 Print #1, " Text = " + s
 End If
 If TagLength > 0 Then
 s = ItemTag
 length = InStr(s, CR)
 While length > 0
 Print #1, " ItemTag = " + Left$(s, length - 1)
 s = Mid$(s, length + 2)
 length = InStr(s, CR)
 Wend
 Print #1, " ItemTag = " + s
 End If
 Print #1, "End"
 Next i

 '-----------
 ' Save links
 '-----------

 Net1.LoopAction = 1 ' Do a links loop

 ' For each link:
 ' - make it the current one
 ' - find its origin and destination nodes
 ' - save its properties in the file

 For i = 1 To LinkCount
 ' Make link the current item
 Net1.Item = Net1.LoopItem(i - 1)

 ' Find origin
 Org = 0
 nodeId = Net1.Org
 For j = 1 To NodeCount
 If node(j) = nodeId Then
 Org = j
 Exit For
 End If
 Next

 ' Find destination
 Dst = 0
 nodeId = Net1.Dst
 For j = 1 To NodeCount
 If node(j) = nodeId Then

 Dst = j
 Exit For
 End If
 Next

 ' Get text and its length
 Text = Net1.Text
 TextLength = Len(Text)

 ' Get tag and its length
 ItemTag = Net1.ItemTag
 TagLength = Len(ItemTag)

 ' Get Number of points
 PointCount = Net1.PointCount

 ' Get points
 If PointCount > 0 Then
 ReDim ptx(0 To PointCount - 1)
 ReDim pty(0 To PointCount - 1)
 For l = 0 To PointCount - 1
 ptx(l) = Net1.PointX(l)
 pty(l) = Net1.PointY(l)
 Next
 End If

 ' Save current link properties
 Print #1, "Begin Link " + Format$(i)
 Print #1, " Type = " + Net1.Type
 Print #1, " Data = " + Net1.Data
 Print #1, " ForeColor = " + Net1.ForeColor
 Print #1, " DrawColor = " + Net1.DrawColor
 Print #1, " DrawWidth = " + Net1.DrawWidth
 Print #1, " DrawStyle = " + Net1.DrawStyle
 Print #1, " Oriented = " + Net1.Oriented
 Print #1, " LinkHead = " + Net1.LinkHead
 Print #1, " Src = " + Format$(Org)
 Print #1, " Dst = " + Format$(Dst)
 Print #1, " Sleeping = " + Net1.Sleeping
 Print #1, " Hiding = " + Net1.Hiding
 Print #1, " Points = " + Format$(PointCount)
 If PointCount > 0 Then
 For l = 0 To PointCount - 1
 Print #1, " " + Format$(ptx(l)) + "," + Format$(pty(l))
 Next
 End If
 If TextLength > 0 Then
 s = Text
 length = InStr(s, CR)
 While length > 0
 Print #1, " Text = " + Left$(s, length - 1)
 s = Mid$(s, length + 2)
 length = InStr(s, CR)
 Wend
 Print #1, " Text = " + s

 End If
 If TagLength > 0 Then
 s = ItemTag
 length = InStr(s, CR)
 While length > 0
 Print #1, " ItemTag = " + Left$(s, length - 1)
 s = Mid$(s, length + 2)
 length = InStr(s, CR)
 Wend
 Print #1, " ItemTag = " + s
 End If
 Print #1, "End"
 Next i

 Erase node
 Erase ptx
 Erase pty

 ' Close file
 Close
End Sub

'--
' (See comment of SaveEasyNetFile subroutine.)
'--
'
Sub OpenEasyNetFile (Net1 As Control, Filename$)
 Dim s$, value$, keyword$, CRLF$
 Dim length%, i%, NodeCount%, LinkCount%
 Dim Version As Variant
 Dim ir As ItemRec
 Dim l As Long
 Dim ptx() As Long
 Dim pty() As Long
 Dim node() As Long
 Dim Owner() As Integer

 CRLF = Chr$(13) + Chr$(10)

 Open Filename For Input As #1

 Line Input #1, s ' Version
 Version = Val(Mid$(s, InStr(s, "=") + 1))
 If Version <> Net1.Version Then
 MsgBox "File created by another EasyNet version!"
 Beep
 Exit Sub
 End If

 ' Node count
 Line Input #1, s
 NodeCount = Val(Mid$(s, InStr(s, "=") + 1))

 ' Link count
 Line Input #1, s

 LinkCount = Val(Mid$(s, InStr(s, "=") + 1))

 If NodeCount = 0 Then
 Close
 Exit Sub
 End If

 ReDim node(1 To NodeCount)
 ReDim Owner(1 To NodeCount)

 ' Load all nodes
 For i = 1 To NodeCount
 Line Input #1, s ' Skip Begin keyword
 length = InStr(s, " ")
 keyword = Left$(s, length - 1)

 If keyword = "Begin" Then
 Net1.Item = 0

 ' Default values
 ir.Type = 0
 ir.Data = 0
 ir.ItemTag = ""
 ir.Text = ""
 ir.ForeColor = Net1.ForeColor
 ir.FillColor = Net1.FillColor
 ir.DrawColor = Net1.DrawColor
 ir.DrawWidth = Net1.DrawWidth
 ir.DrawStyle = Net1.DrawStyle
 ir.Sleeping = Net1.Sleeping
 ir.Hiding = Net1.Hiding
 ir.Shape = Net1.Shape
 ir.Alignment = Net1.Alignment
 ir.AutoSize = Net1.AutoSize
 ir.Transparent = Net1.Transparent
 ir.X1 = 0
 ir.Y1 = 0
 ir.X2 = 0
 ir.Y2 = 0
 ir.OwnerNode = 0

 Do
 Line Input #1, s ' Skip Begin keyword
 s = LTrim$(s)
 length = InStr(s, " ")
 If length > 0 Then
 keyword = Left$(s, length - 1)
 Else
 keyword = s
 End If
 If keyword = "End" Then
 Exit Do
 End If
 value = Mid$(s, length + 2)

 ' Load each node property
 Select Case keyword
 Case "Type"
 ir.Type = Val(value)
 Case "Data"
 ir.Data = Val(value)
 Case "FillColor"
 ir.FillColor = Val(value)
 Case "ForeColor"
 ir.ForeColor = Val(value)
 Case "DrawColor"
 ir.DrawColor = Val(value)
 Case "DrawWidth"
 ir.DrawWidth = Val(value)
 Case "DrawStyle"
 ir.DrawStyle = Val(value)
 Case "Sleeping"
 ir.Sleeping = Val(value)
 Case "Hiding"
 ir.Hiding = Val(value)
 Case "Transparent"
 ir.Transparent = Val(value)
 Case "Alignment"
 ir.Alignment = Val(value)
 Case "AutoSize"
 ir.AutoSize = Val(value)
 Case "Shape"
 ir.Shape = Val(value)
 Case "X1"
 ir.X1 = Val(value)
 Case "X2"
 ir.X2 = Val(value)
 Case "Y1"
 ir.Y1 = Val(value)
 Case "Y2"
 ir.Y2 = Val(value)
 Case "Owner"
 ir.OwnerNode = Val(value)
 Case "ItemTag"
 If ir.ItemTag = "" Then
 ir.ItemTag = value
 Else
 ir.ItemTag = ir.ItemTag + CRLF + value
 End If
 Case "Text"
 If ir.Text = "" Then
 ir.Text = value
 Else
 ir.Text = ir.Text + CRLF + value
 End If
 End Select
 Loop

 ' Create Node
 Net1.EditAction = 0

 ' For each node, store its identifier
 ' (will be used for links loading and for owner nodes)
 node(i) = Net1.Item

 Owner(i) = ir.OwnerNode

 Net1.Type = ir.Type
 Net1.Data = ir.Data
 Net1.FillColor = ir.FillColor
 Net1.ForeColor = ir.ForeColor
 Net1.DrawColor = ir.DrawColor
 Net1.DrawWidth = ir.DrawWidth
 Net1.DrawStyle = ir.DrawStyle
 Net1.Hiding = ir.Hiding
 Net1.Alignment = ir.Alignment
 Net1.AutoSize = ir.AutoSize
 Net1.Shape = ir.Shape
 Net1.Transparent = ir.Transparent
 Net1.X1 = ir.X1
 Net1.Y1 = ir.Y1
 Net1.X2 = ir.X2
 Net1.Y2 = ir.Y2
 Net1.ItemTag = ir.ItemTag
 Net1.Text = ir.Text
 Net1.Sleeping = ir.Sleeping ' Must be last setting
 End If
 Next i

 ' Manage owner nodes
 For i = 1 To NodeCount
 Net1.Item = node(i)
 If Owner(i) <> 0 Then
 Net1.Owner = node(Owner(i))
 End If
 Next i

 ' List of link
 For i = 1 To LinkCount
 Line Input #1, s ' Skip Begin keyword
 length = InStr(s, " ")
 keyword = Left$(s, length - 1)

 If keyword = "Begin" Then
 Net1.Item = 0

 ' Default values
 ir.Type = 0
 ir.Data = 0
 ir.ItemTag = ""
 ir.Text = ""
 ir.ForeColor = Net1.ForeColor
 ir.DrawColor = Net1.DrawColor
 ir.DrawWidth = Net1.DrawWidth
 ir.DrawStyle = Net1.DrawStyle

 ir.Sleeping = Net1.Sleeping
 ir.Hiding = Net1.Hiding
 ir.Oriented = Net1.Oriented
 ir.LinkHead = Net1.LinkHead
 ir.SrcNode = 0
 ir.DstNode = 0
 ir.Points = 0

 Do
 Line Input #1, s ' Skip Begin keyword

 s = LTrim$(s)
 length = InStr(s, " ")
 If length > 0 Then
 keyword = Left$(s, length - 1)
 Else
 keyword = s
 End If
 If keyword = "End" Then
 Exit Do
 End If
 value = Mid$(s, length + 2)

 ' Load each link property
 Select Case keyword
 Case "Type"
 ir.Type = Val(value)
 Case "Data"
 ir.Data = Val(value)
 Case "ForeColor"
 ir.ForeColor = Val(value)
 Case "DrawColor"
 ir.DrawColor = Val(value)
 Case "DrawWidth"
 ir.DrawWidth = Val(value)
 Case "DrawStyle"
 ir.DrawStyle = Val(value)
 Case "Sleeping"
 ir.Sleeping = Val(value)
 Case "Hiding"
 ir.Hiding = Val(value)
 Case "Oriented"
 ir.Oriented = Val(value)
 Case "LinkHead"
 ir.LinkHead = Val(value)
 Case "ItemTag"
 If ir.ItemTag = "" Then
 ir.ItemTag = value
 Else
 ir.ItemTag = ir.ItemTag + CRLF + value
 End If
 Case "Text"
 If ir.Text = "" Then
 ir.Text = value
 Else

 ir.Text = ir.Text + CRLF + value
 End If
 Case "Src"
 ir.SrcNode = node(Val(value))
 Case "Dst"
 ir.DstNode = node(Val(value))
 Case "Points"
 ir.Points = Val(value)

 ' Get points
 If ir.Points > 0 Then
 ReDim ptx(0 To ir.Points - 1)
 ReDim pty(0 To ir.Points - 1)
 For l = 0 To ir.Points - 1
 Line Input #1, s ' Read point
 s = LTrim$(s)
 length = InStr(s, ",")
 ptx(l) = Val(Left$(s, length - 1))
 pty(l) = Val(Mid$(s, length + 1))
 Next l
 End If
 End Select
 Loop

 ' Set origin and destination nodes for next created link
 Net1.Org = ir.SrcNode
 Net1.Dst = ir.DstNode

 ' Create Link
 Net1.EditAction = 1

 Net1.Type = ir.Type
 Net1.Data = ir.Data
 Net1.ForeColor = ir.ForeColor
 Net1.DrawColor = ir.DrawColor
 Net1.DrawWidth = ir.DrawWidth
 Net1.DrawStyle = ir.DrawStyle
 Net1.Hiding = ir.Hiding
 Net1.Oriented = ir.Oriented
 Net1.LinkHead = ir.LinkHead
 Net1.ItemTag = ir.ItemTag
 Net1.Text = ir.Text
 Net1.PointCount = ir.Points
 For l = 0 To ir.Points - 1
 Net1.PointX(l) = ptx(l)
 Net1.PointY(l) = pty(l)
 Next l
 Net1.Sleeping = ir.Sleeping ' Must be last setting
 End If
 Next i

 ' Erase dynamic arrays
 Erase ptx
 Erase pty
 Erase node

 Erase Owner

 ' Close file
 Close
End Sub

Performance tuning
Setting following properties to False allows to increase speed dramatically:

DoAddLink
DoAddNode
DoChange
DoSelChange
Repaint
CheckItem

Example:
You may insert this portion of code each time you need to do a time consuming task
like saving an EasyNet diagram or navigating in the diagram.

' Setting those properties to False improve speed
 Net1.Repaint = False
 Net1.DoChange = False
 Net1.DoSelChange = False
 Net1.DoAddNode = False
 Net1.DoAddLink = False
 Net1.CheckItem = False

When you have terminated your task, you may reset those properties to True.

 Net1.Repaint = True
 Net1.DoChange = True
 Net1.DoSelChange = True
 Net1.DoAddNode = True
 Net1.DoAddLink = True
 Net1.CheckItem = True

Limits
For one EasyNet control:

· the maximum number of items (nodes + links) is 16376.
· the maximum number of link points is 254.

(therefore, the maximum number of link segments is 255).

For each item, the Text setting is approximately 65,500 characters. (same
setting for ItemTag property).

Remark: If your application using EasyNet has been generated without
license file, then the control will be limited to 20 items instead of 16376.

Properties
All the properties are listed below. Properties that apply only to the EasyNet Custom

Control, or require special consideration when used with it, are underlined. They are
documented in this help file. See the Visual Basic Language Reference or online Help for
documentation of the remaining properties.
(About) Alignment BackColor AutoScroll
AutoSize BackPicture BorderStyle Caption
CanDrawNode CanDrawLink CanMoveNode CanSizeNode
CanStretchLink CanMultiLink CheckItem CtlName
DisplayHandles DoAddLink DoAddNode DoChange
DoSelChange Data Dst DragIcon
DragMode DrawColor DrawStyle DrawWidth
EditAction Enabled FillColor FontBold
FontItalic FontName FontSize FontStrike
FontUnder ForeColor Height HelpContextId
Hiding Hwnd ImageFile Index
IsLink Item ItemTag ItemZOrder
Left LinkHead LoopAction LoopCount
LoopItem LoopScope MousePointer MultiSel
Oriented Org Owner Parent
Picture PointCount PointedArea PointedItem
PointX PointY ReadOnly Repaint
ShowGrid ScrollBars SelectMode Shape
Sleeping TabIndex TabStop Tag
Text Top Transparent Type
Version Visible Width X1
X2 xGrid xScroll Y1
Y2 yGrid yScroll Zoom

Events
All the events are listed below. Events that apply only to the EasyNet Custom Control, or

require special consideration when used with it, are underlined. They are documented in this
help file.    See the Visual Basic Language Reference or online Help for documentation of the
remaining events.

AddLink AddNode Change Click
DblClick DragDrop DragOver ErrSpace
GotFocus KeyDown KeyPress KeyUp
LostFocus MouseDown MouseMove MouseUp
SelChange

EditAction Property
Description
Specifies an action that applies to selected items or that allows to select or

unselect items.
Not available at design time; write only at run time.
Usage
[form.]NET.EditAction[= setting]
Settings
The EditAction property settings are:
Setting Description
0 create a node
1 create a link
2 delete selected nodes (and their links)
3 select all nodes.
4 unselect.
5 copy selected nodes onto the clipboard in a metafile

format.
6 clear network diagram (all items are deleted)
7 copy all the diagram onto the clipboard in a metafile

format.
8 the image of the diagram is written to disk as a metafile

(.WMF).
For this option to work, the ImageFile property must be
set to provide a name for the file.

Data Type
Integer (enumerated)
Remarks
Link creation: The link that is created when setting EditAction to 1 is a link

that links the nodes specified by Org and Dst properties. If one of this node is
not valid, the link is not created.
Selection: Only nodes can be selected.by the user.
Delete: When a node is deleted, all its links are also deleted. A link cannot

exist without its origin and destination nodes. If one of these two nodes is
deleted, the link is also deleted.
See Also
Drawing

FillColor Property
Description
If current item is 0, sets or returns the "current" filling node color (the filling

color used for next created nodes).
If current item is a node, sets or returns its color (the color with which the

node is filled).
If current item is a link, writing has no effect and reading returns 0.
If LoopScope property is True, writing applies to every nodes involved in a

call to LoopAction property.
This property has no effect if Transparent property is set.
Usage
[form.]NET.FillColor[= color &]
Settings
The FillColor property settings are:
Setting Description
Normal RGB Colors Color set with RGB or QBColor function in code
System Default Colors Colors specified with the system color constants

from
CONSTANT.TXT, a Visual Basic file that you can load
into a project's global module.    Window's
substitutes the user's choices, as specified through
the user's Control Panel Settings.

By default, FillColor is set to 0 (black)
Data Type

Long
See Also
Drawing

ForeColor Property
Description
If current item is 0, sets or returns the "current" item text color (the text

color used for next created items).
If current item is not 0, sets or returns its text color.
If LoopScope property is True, writing applies to every items involved in a

call to LoopAction property.
Usage
[form.]NET.ForeColor[= color &]
Settings
The ForeColor property settings are:
Setting Description
Normal RGB Colors Color set with RGB or QBColor function in code
System Default Colors Colors specified with the system color constants

from
CONSTANT.TXT, a Visual Basic file that you can load
into a project's global module.    Window's
substitutes the user's choices, as specified through
the user's Control Panel Settings.

By default, ForeColor is set to 0 (black)
Data Type

Long
See Also
Drawing

DrawColor Property
Description
If current item is 0, sets or returns the "current" drawing color    (the drawing

color used for next created items).
If current item is not 0, sets or returns its drawing color.
If LoopScope property is True, writing applies to every items involved in a

call to LoopAction property.
Usage
[form.]NET.DrawColor[= color &]
Settings
The DrawColor property settings are:
Setting Description
Normal RGB Colors Color set with RGB or QBColor function in code
System Default Colors Colors specified with the system color constants

from
CONSTANT.TXT, a Visual Basic file that you can load
into a project's global module.    Window's
substitutes the user's choices, as specified through
the user's Control Panel Settings.

By default, DrawColor is set to 0 (black)
Data Type
Long
See Also
Drawing

DrawStyle Property
Description
If current item is 0, sets or returns the "current" drawing style    (the drawing

style used for next created items).
If current item is not 0, sets or returns the item drawing style.
If LoopScope property is True, writing applies to every items involved in a

call to LoopAction property.
Usage
[form.]NET.DrawStyle[= size]
Setting

The DrawStyle property settings are:
Setting Description

0 (Default) Solid
1 Dash
2 Dot
3 Dash-Dot
4 Dash-Dot-Dot
5 Transparent
6 Inside Solid

Data Type
Integer (enumerated)
Remarks
If DrawWidth is set to a value greater than 1, then DrawStyles 1 through 4

produce a solid line (the DrawStyle property value is not changed).    If
DrawWidth is set to 1, DrawStyle produces the effect described above for
each setting.
See Also
Drawing

DrawWidth Property
Description
If current item is 0, sets or returns the "current" drawing pen width (the

drawing pen width used for next created items).
If current item is not 0, sets or returns the item drawing pen width.
If LoopScope property is True, writing applies to every items involved in a

call to LoopAction property.
Usage
[form.]NET.DrawWidth[= size]
Setting
You can set DrawWidth to a value of 1 to 8 (pixels).
Data Type
Integer
See Also
Drawing

Shape Property
Description
If current item is 0, sets or returns the "current" node shape    (the shape

used for next created nodes).
If current item is a node, sets or returns its shape (ellipse, rectangle, round

rectangle, diamond).
If current item is a link, writing has no effect and reading returns 0.
If LoopScope property is True, writing applies to every nodes involved in a

call to LoopAction property.
Usage
[form.]NET.Shape[= shape]
Settings
The Shape property settings are:
Setting Description
0 Ellipse
1 Rectangle
2 Round rectangle
3 Diamond
By default, Shape is set to 0 (ellipse)
Data Type
Integer (enumerated)
See Also
Drawing

LinkHead Property
If current item is 0, sets or returns the "current" link arrowhead shape
(the arrowhead used for next created links).
If current item is a node, writing has no effect and reading returns 0.
If current item is a link, sets or returns its arrowhead
If LoopScope property is True, writing applies to every links involved in a call

to LoopAction property.
Usage
[form.]NET.LinkHead[= shape]
Settings
The LinkHead property settings are:
Setting Description
0 Filled arrow 15°
1 Filled circle
2 Empty arrow 15°
3 Empty circle
4 Filled arrow 30°
5 Empty arrow 30°
6 Filled arrow 45°
7 Empty arrow 45°

By default, LinkHead is set to 0
Data Type
Integer (enumerated)
See Also
Drawing

Alignment Property
Description
If current item is 0, sets or returns the "current" text alignment style
(the text alignment style used for next created nodes).
If current item is a node, sets or returns its text alignment style.
If current item is a link, writing has no effect and reading returns 0.
If LoopScope property is True, writing applies to every nodes involved in a

call to LoopAction property.
Usage
[form.]NET.Alignment[= alignment &]

Settings
The Alignment property settings are:
Setting Description
0 Left - TOP
1 Left - MIDDLE
2 Left - BOTTOM
3 Right - TOP
4 Right - MIDDLE
5 Right - BOTTOM
6 Center - TOP
7 Center - MIDDLE
8 Center - BOTTOM

Data Type
Integer (enumerated)
See Also
Drawing

AutoSize Property
Description
Allows to adjust node size to picture size or adjust picture size to node size.
If current item is 0, sets or returns the "current" node autosize style
(the autosize style used for next created nodes).
If current item is a node, sets or returns its autosize style.
If current item is a link, writing has no effect and reading returns 0.
If LoopScope property is True, writing applies to every nodes involved in a

call to LoopAction property.
Usage
[form.]NET.Autosize[= autosize &]

Settings
The AutoSize property settings are:
Setting Description
0 None
1 Adjust picture size to node size
2 Adjust node size to picture size

Data Type
Integer (enumerated)
See Also
Drawing

AutoScroll Property
Description
Specify if Automatic scrolling is allowed. For instance, if an item is dragged to the

edge of the currently visible drawing area, the area automatically scrolls.
Usage
[form.]NET.AutoScroll[= {True | False}]
Settings
The AutoScroll Property settings are:
Setting Description
False Automatic scrolling is not allowed.
True (Default) Automatic scrolling is allowed.
Data Type
Integer (Boolean)
See Also
Capabilities

Transparent Property
Description
If current item is 0, specify if next created nodes will be transparent or not.
If current item is a node, specify if it is transparent or not.
If current item is a link, writing has no effect and reading returns 0.
If LoopScope property is True, writing applies to every nodes involved in a

call to LoopAction property.
Usage
[form.]NET.Transparent[=    {True | False}]
Settings
The Transparent property settings are:
Setting Description
False (default) Opaque
True Transparent
Data Type
Integer (Boolean)
See also
Drawing

X1, Y1, X2, Y2 Property
Description
If current item is 0, sets or returns the coordinates of upper left point (X1,

Y1) or lower right point (X2, Y2) of the bounding rectangle of next created
node.
If current item is a node, sets or returns the coordinates of upper left point

(X1, Y1) or lower right point (X2, Y2) of its bounding rectangle.
If current item is a link, writing those properties has no effect and reading

returns the coordinates of upper left point (X1, Y1) or lower right point (X2,
Y2) of its bounding rectangle.
If LoopScope property is True, writing applies to every items involved in a

call to LoopAction property.
Not available at design time.
Usage
[form.]NET.X1[= numeric expression]
[form.]NET.Y1[= numeric expression]
[form.]NET.X2[= numeric expression]
[form.]NET.Y2[= numeric expression]
Data Type
Long
See Also
Drawing

PointCount Property
Description
If current item is 0 or is a node, writing this property has no effect
and reading it returns 0.
If current item is a link, sets or returns the number of its points.
Not available at design time.
Usage
[form.]NET.PointCount[= numeric expression]
Data Type
Integer   
Remarks
A link point is a point that joins two segments of a link. If a link has n points,
it is composed of n+1 segments.
The maximum value for the number of link points is 254.
See Also
Drawing

PointX Property
Description
If current item is 0 or is a node, writing this property has no effect and

reading it returns 0.
If current item is a link, sets or returns a long integer value that identifies an

x position of a specified link point.
Not available at design time.
Usage
[form.]NET.PointX(index)[= numeric expression]
Data Type
Long
Remarks
If current item is a link reading this property has special meanings if index
has a negative value between -1 and -4:
· -1: returns x position of intersection point between origin node border

and link.
· -2: returns x position of intersection point between destination node

border and link
· -3: if link is oriented, returns x position of one arrowhead point.

If link is not oriented, it has the same effect as the case -2.
· -4: if link is oriented, returns x position of the other arrowhead point.

If link is not oriented, it has the same effect as the case -2.

See Also

Drawing
Example Print an arrow
Dim i, nbpoint As Integer
Dim l, ptx1, pty1, ptx2, pty2, ptx3, pty3 As Long
Dim ptx(), pty() As Long

'Number of extra points
nbpoint = Net1.PointCount

'Allocate an array of nbpoint + 2
ReDim ptx(0 To nbpoint + 1)
ReDim pty(0 To nbpoint + 1)

'First point (intersection between origin node border and link)
ptx(0) = Net1.PointX(-1)
pty(0) = Net1.PointY(-1)

' Normal extra points
For l = 1 To nbpoint
 ptx(l) = Net1.PointX(l - 1)
 pty(l) = Net1.PointY(l - 1)
Next l

'Last point (intersection between destination node border and link)
ptx(nbpoint + 1) = Net1.PointX(-2)
pty(nbpoint + 1) = Net1.PointY(-2)

' Draw all link segments
For l = 0 To nbpoint
 printer.Line (ptx(l), pty(l))-(ptx(l+1), pty(l+1)), Net1.DrawColor
Next l

'Get point arrow head
ptx1 = Net1.PointX(-3)
pty1 = Net1.PointY(-3)
ptx2 = Net1.PointX(-4)
pty2 = Net1.PointY(-4)
ptx3 = ptx(nbpoint + 1)
pty3 = pty(nbpoint + 1)

'Draw arrow head
printer.Line (ptx1, pty1)-(ptx2, pty2), Net1.DrawColor
printer.Line (ptx1, pty1)-(ptx3, pty3), Net1.DrawColor
printer.Line (ptx3, pty3)-(ptx2, pty2), Net1.DrawColor

PointY Property
Description
If current item is 0 or is a node, writing this property has no effect and

reading it returns 0.
If current item is a link, sets or returns a long integer value that identifies an

y position of a specified link point.
Not available at design time.
Usage
[form.]NET.PointY(index)[= numeric expression]
Data Type
Long
Remarks
If current item is a link, reading this property has special meanings if index
has a negative value between -1 and -4:
· -1: returns y position of intersection point between origin node border

and link.
· -2: returns y position of intersection point between destination node

border and link
· -3: if link is oriented, returns y position of one arrowhead point.

If link is not oriented, it has the same effect as the case -2.
· -4: if link is oriented, returns y position of the other arrowhead point.

If link is not oriented, it has the same effect as the case -2.

See Also

Drawing
Example Print an arrow
Dim i, nbpoint As Integer
Dim l, ptx1, pty1, ptx2, pty2, ptx3, pty3 As Long
Dim ptx(), pty() As Long

'Number of extra points
nbpoint = Net1.PointCount

'Allocate an array of nbpoint + 2
ReDim ptx(0 To nbpoint + 1)
ReDim pty(0 To nbpoint + 1)

'First point (intersection between origin node border and link)
ptx(0) = Net1.PointX(-1)
pty(0) = Net1.PointY(-1)

' Normal extra points
For l = 1 To nbpoint
 ptx(l) = Net1.PointX(l - 1)
 pty(l) = Net1.PointY(l - 1)
Next l

'Last point (intersection between destination node border and link)
ptx(nbpoint + 1) = Net1.PointX(-2)
pty(nbpoint + 1) = Net1.PointY(-2)

' Draw all link segments
For l = 0 To nbpoint
 printer.Line (ptx(l), pty(l))-(ptx(l+1), pty(l+1)), Net1.DrawColor
Next l

'Get point arrow head
ptx1 = Net1.PointX(-3)
pty1 = Net1.PointY(-3)
ptx2 = Net1.PointX(-4)
pty2 = Net1.PointY(-4)
ptx3 = ptx(nbpoint + 1)
pty3 = pty(nbpoint + 1)

'Draw arrow head
printer.Line (ptx1, pty1)-(ptx2, pty2), Net1.DrawColor
printer.Line (ptx1, pty1)-(ptx3, pty3), Net1.DrawColor
printer.Line (ptx3, pty3)-(ptx2, pty2), Net1.DrawColor

Oriented Property
Description
If current item is 0, specify if next created links will be oriented or not.
If current item is a link, specify if it is oriented or not.
If current item is a node, writing has no effect and reading returns 0.
When a link is oriented, it is displayed with an arrowhead at its destination

node.
If LoopScope property is True, writing applies to every links involved in a call

to LoopAction property.
Usage
[form.]NET.Oriented[=    {True | False}]
Settings
The Oriented property settings are:
Setting Description
False no arrowhead
True (default) one arrowhead
Data Type
Integer (Boolean)
See also
Navigation

Org Property
Description
Sets the origin node of next created links (The value of the current item has

no effect when writing this property).
If current item is 0, or if it is not a link, returns the origin node of next

created links.
If current item is a link, returns its origin node.
Not available at design time.
Usage
[form.]NET.Org[= idNode]
Data Type
Long
Remarks
It is not possible to change directly the origin node of a link. If you want to

do that, you have to memorize the link properties, destroy it, create a new
one with the new origin node and sets previous saved properties.
See Also
Navigation

Dst Property
Description
Sets the destination node of next created links (The value of the current

item has no effect when writing this property).
If current item is 0, or if it is not a link, returns the destination node of next

created links.
If current item is a link, returns its destination node.
Not available at design time.
Usage
[form.]NET.Dst[= idNode]
Data Type
Long
Remarks
It is not possible to change directly the destination node of a link. If you

want to do that, you have to memorize the link properties, destroy it, create
a new one with the new destination node and sets previous saved properties.
See Also
Navigation

Item Property
Description
Sets or returns the current item (node or link). The current item is the

selected one. Making an item be the current one allows to work with it
(setting or getting its properties: position ,size, text, colors, etc).
Setting this property causes previous selection to disappear.
Not available at design time.
Usage
[form.]NET.Item[= item]
Data Type
Long
See Also
Items

IsLink Property
Description
Indicates if the current item is a link.
Not available at design time; read only at run time.
Usage
[form.]NET.IsLink
Settings
The IsLink property settings are:
Setting Description
False current item is 0 or it is a node
True current item is not 0 and it is a link
Data Type
Integer (Boolean)
See Also
Items

Sleeping Property
Description
If current item is 0, it has no effect.
If current item is not 0, specify if it is in "sleeping mode" or not.
Not available at design time
When an item is in "sleeping mode", it is inactive and the user cannot

interactively make it current or selected. He can do this only
programmaticaly by saving its identifier in a global variable. Such an item
can be used to display a bitmap or a text but the user cannot move, stretch
or resize it with the mouse.
If LoopScope property is True, writing applies to every items involved in a

call to LoopAction property.
Usage
[form.]NET.Sleeping [=    {True | False}]
Settings
The Sleeping property settings are:
Setting Description
False (default) The item is active.
True The item is sleeping.
Data Type
Integer (Boolean)
See also
Items

LoopAction Property
Description
Specifies the type of item navigation to perform.
Not available at design time; write only at run time.
Usage
[form.]NET.LoopAction = setting
Settings
The LoopAction property settings are:
Setting Description
0 all nodes
1 all links
2 all selected nodes
3 all links of a node
4 all links leaving current node (out links)
5 all links coming to current node (in links)
6 all nodes connected to a node (in and out nodes)
7 all destination nodes of current node
8 all origin nodes of current node
9 all owned nodes of current node
10 all items (nodes and links).

Data Type
Integer (enumerated)
Remarks
1. This property is to be used in conjonction with LoopCount and LoopItem

properties:
· LoopAction specifies the type of loop to do: for instance a loop among

all current node links (LoopAction = 3).
· After a call to LoopAction, LoopCount indicates the number of items

involved in this loop.
· Finally, LoopItem allows to read each item and to perform any work

with it.
2. Two calls to LoopAction property cannnot be cascaded.
See Also
Navigation

LoopCount Property
Description
Specifies the count of items involved in a navigation action performed by a

call to LoopAction property.
Not available at design time; read only at run time.
Usage
[form.]NET.LoopCount
Data Type
Integer   
Remarks
This property has to be called just after a call to LoopAction    property.
See Also
Navigation

LoopItem Property
Description
Returns an item selected in a navigation action performed by a call to

LoopAction property.
Not available at design time; read only at run time.
Usage
[form.]NET.LoopItem(index)
Data Type
Long
See Also
Navigation

LoopScope Property
Description
When set to True, this property indicates that next item property

settings will apply to all items involved in a call to LoopAction property.
Not available at design time
Usage
[form.]NET.LoopScope[= {True | False}]
Settings
The LoopScope Property settings are:
Setting Description
False (Default) No loop scope .
True Loop scope is performed.
Data Type
Integer (Boolean)
Remark
Properties that may have a loop scope are the following:
Alignment Data DrawColor DrawStyle
DrawWidth FillColor ForeColor Hiding
LinkHead Oriented Owner Picture
Shape Sleeping Transparent Type
X1 Y1 X2 Y2
See Also
Navigation
Example:
Makes all selected nodes transparent.

' Do a loop with selected nodes
Net1.LoopAction = 2
' Indicates that next item property settings apply
' to all items in the loop.
Net1.LoopScope = True
' Cause all selected nodes to be transparent.
Net1.Transparent = True
' Reset loop scope to false
Net1.LoopScope = False

Type Property
Description
If current item is 0, writing this property has no effect and reading it returns

0.
If current item is not 0, sets or returns its associated integer data.
If LoopScope property is True, writing applies to every items involved in a

call to LoopAction property.
Not available at design time.
Usage
[form.]NET.Type[= setting]
Data Type
Integer
Remarks
Typically, this property allows the user to define node or link types. Like Data

property, the value of Type property is not used by the EasyNet control but
only stored. The meaning of this property depends on the application that
uses it.
See Also
Data Association

Data Property
Description
If current item is 0, writing this property has no effect and reading it returns

0.
If current item is not 0, sets or returns its associated long data.
If LoopScope property is True, writing applies to every items involved in a

call to LoopAction property.
Not available at design time.
Usage
[form.]NET.Data[= setting]
Data Type
Long
Remarks
Like Type property, the value of Data property is not used by the EasyNet

control but only stored. The meaning of this property depends on the
application that uses it.
See Also
Data Association

Text Property
Description
If current item is 0, writing this property has no effect and reading it returns

an empty string.
If current item is not 0 (node or link), sets or returns the text associated with

this item. The EasyNet control maintains the memory for the strings
associated to items.
Not available at design time.
The text associated to a node is displayed inside the node. It is a multiline

display. The text is wrapped automatically inside the node. Linefeed and
carriage return characters are supported.
The text associated to a link is displayed at the middle of    its segment

number n/2 + 1 (n is the number of segments). This text is displayed in a
single line.
Usage
[form.]NET.Text[= string expression]
Data Type
String
Remarks
The Text setting is approximately 65,500 characters.
See Also
Drawing

ItemTag Property
Description
If current item is 0, writing this property has no effect and reading it returns

an empty string.
If current item is not 0 (node or link), sets or returns a tag associated with

this item. The EasyNet control maintains the memory for the tags associated
to items.
Not available at design time.
Usage
[form.]NET.ItemTag[= string expression]
Data Type
String
Remarks
The Itemtag setting is approximately 65,500 characters.
See Also
Data Association

Picture Property
Description
If current item is 0, sets or returns the picture to be displayed in next

created nodes.
If current item is a node, sets or returns the picture to be displayed in this

node. This picture can be a bitmap or an icon.
If current item is a link, writing this property has no effect and reading it

returns 0.
If LoopScope property is True, writing applies to every nodes involved in a

call to LoopAction property.
Not available at design time.
Usage
[form.]NET.Picture[= picture]
Settings
The Picture Property settings are:
Setting Description
(none) (Default)
(bitmap, icon) Specifies a picture. You can also set this property using

the
LoadPicture function on a bitmap or an icon.

Data Type
Integer
See Also
Drawing

SelectMode Property
Description
Allow to enter in selection mode instead of drawing mode. This property has

no effect if MultiSel property is not set.
Not available at design time.
 The selection mode allows to select several items. You bring the mouse

cursor into the EasyNet control, press the left button, move the mouse and
release the left button. All nodes inside the selection rectangle are selected.
Then you can unselect some items by clicking them with the mouse and
simultaneously pressing the shift or control key. You can select them again by
using the same method.
Usage
[form.]NET.SelectMode[= {True | False}]
Settings
The SelectMode Property settings are:
Setting Description
False (Default) Drawing mode.
True Select mode is set.
Data Type
Integer (Boolean)

CanDrawNode Property
Description
Specify if you can create nodes interactively.
Usage
[form.]NET.CanDrawNode[= {True | False}]
Settings
The CanDrawNode Property settings are:
Setting Description
False Drawing nodes is not allowed.
True (Default) Drawing nodes is allowed.
Data Type
Integer (Boolean)
See Also
Capabilities

CanDrawLink Property
Description
Specify if you can create links interactively.
Usage
[form.]NET.CanDrawLink[=    {True | False}]
Settings
The CanDrawLink Property settings are:
Setting Description
False Drawing links is not allowed.
True (Default) Drawing links is allowed.
Data Type
Integer (Boolean)
See Also
Capabilities

CanMoveNode Property
Description
Specify if you can move (drag) nodes interactively.
Usage
[form.]NET.CanMoveNode[=    {True | False}]
Settings
The CanMoveNode Property settings are:
Setting Description
False Moving nodes is not allowed.
True (Default) Moving nodes is allowed.
Data Type
Integer (Boolean)
See Also
Capabilities

CanSizeNode Property
Description
Specify if you can resize nodes interactively.
Usage
[form.]NET.CanSizeNode[=    {True | False}]
Settings
The CanSizeNode Property settings are:
Setting Description
False Sizing nodes is not allowed.
True (Default) Sizing nodes is allowed.
Data Type
Integer (Boolean)
See Also
Capabilities

CanStretchLink Property
Description
Specify if you can "stretch" links (i.e add or remove segments)interactively
Usage
[form.]NET.CanStretchLink[=    {True | False}]
Settings
The CanStretchLink Property settings are:
Setting Description
False Stretching links is not allowed.
True (Default) Stretching links is allowed.
Data Type
Integer (Boolean)
See Also
Capabilities

CanMultiLink Property
Description
Specify if you can have several links between two nodes.
Usage
[form.]NET.CanMultiLink[= {True | False}]
Settings
The CanMultiLink Property settings are:
Setting Description
False (Default)    Multi links is not allowed.
True Multi links is allowed.
Data Type
Integer (Boolean)
See Also
Capabilities

MultiSel Property
Description
Specify if multiselection mode is possible or not.
Usage
[form.]NET.MultiSel[=    {True | False}]
Settings
The MultiSel Property settings are:
Setting Description
False Multi selection is not allowed.
True (Default) Multi selection is allowed.
Data Type
Integer (Boolean)
See Also
Capabilities

ReadOnly Property
Description
Set "read only" mode. In such a mode user interaction is not allowed.
Usage
[form.]NET.ReadOnly[=    {True | False}]
Settings
The ReadOnly Property settings are:
Setting Description
False (Default) "Read only" mode is set.
True "Read only" mode is not set.
Data Type
Integer (Boolean)
See Also
Capabilities

ScrollBars Property
Description
Allows to add scrollbars for the EasyNet control. Read-only at run time.
Usage
[form.]NET.ScrollBars[= setting]
Settings
The ScrollBars Property settings are:
Setting Description
0 (Default) No scrollbar.
1 Horizontal scrollbar.
2 Vertical scrollbar.
3 Both Horizontal and Vertical scrollbars.
Data Type
Integer (Enumerated)
See Also
Capabilities

xGrid, yGrid Property
Description
Sets or returns the grid values in twips.
Usage
[form.]NET.xGrid[= numeric expression]
[form.]NET.yGrid[= numeric expression]
Data Type
Long
See Also
Capabilities

ShowGrid Property
Description
Specify if the grid is displayed or not.
Usage
[form.]NET.ShowGrid[=    {True | False}]
Settings
The ShowGrid Property settings are:
Setting Description
False (Default) The grid is not displayed.
True The grid is displayed.
Data Type
Integer (Boolean)
See Also
Capabilities

xScroll, yScroll Property
Description
Sets or returns the scroll values in twips.
Not available at design time.
Usage
[form.]NET.xScroll[= numeric expression]
[form.]NET.yScroll[= numeric expression]
Data Type
Long

PointedArea Property
Description
Returns the type of the area pointed by the mouse (sizing square,

stretching square, linking square, node, over no special area).
Not available at design time;    read only at run time
Usage
[form.]NET.PointedArea
Settings
The PointedArea property settings are:
Setting Description
0 Size NW-SE square area
1 Size N-S square area
2 Size NE-SW square area
3 Size W-E square area
4 Stretching square area
5 Linking square area
6 Node area
7 No special area.
8 Link area
Data Type
Integer
Remarks
This property allows to change dynamically the mouse pointer

BEFORE the user clicks anywhere, to indicate what actions are
possible.
 For example, when the pointer is over one of the corner points of a

node, it should change to the standard NE/SW or NW/SE diagonal
arrow. When it is over a side node, it would be the N/S or E/W arrow.

PointedItem Property
Description
Returns the item identifier pointed by the mouse.
Not available at design time;    read only at run time
Usage
[form.]NET.PointedItem
Data Type
Long

BackPicture Property
Description
This property is the same as the standard Visual Basic Picture

property except that it only supports    bitmap (.BMP) files.

DoAddLink Property
Description
Specify if AddLink event can be fired. Setting this property to False

increases speed performance.
Usage
[form.]NET.DoAddLink[= {True | False}]
Settings
The DoAddLink Property settings are:
Setting Description
False AddLink event cannot be fired
True (Default) AddLink event can be fired
Data Type
Integer (Boolean)
See Also
Capabilities
Performance tuning

DoAddNode Property
Description
Specify if AddNode event can be fired. Setting this property to False

increases speed performance.
Usage
[form.]NET.DoAddNode[= {True | False}]
Settings
The DoAddNode Property settings are:
Setting Description
False AddNode event cannot be fired
True (Default) AddNode event can be fired
Data Type
Integer (Boolean)
See Also
Capabilities
Performance tuning

DoChange Property
Description
Specify if Change event can be fired. Setting this property to False

increases speed performance.
Usage
[form.]NET.DoChange[= {True | False}]
Settings
The DoChange Property settings are:
Setting Description
False Change event cannot be fired
True (Default) Change event can be fired
Data Type
Integer (Boolean)
See Also
Capabilities
Performance tuning

DoSelChange Property
Description
Specify if SelChange event can be fired. Setting this property to False

increases speed performance.
Usage
[form.]NET.DoSelChange[= {True | False}]
Settings
The DoSelChange Property settings are:
Setting Description
False SelChange event cannot be fired
True (Default) SelChange event can be fired
Data Type
Integer (Boolean)
See Also
Capabilities
Performance tuning

Repaint Property
Description
Specify if repainting the EasyNet control is allowed or not.Setting this

property to False increases speed performance. Setting this property
to True causes a refresh.
Not available at design time
Usage
[form.]NET.Repaint[= {True | False}]
Settings
The Repaint Property settings are:
Setting Description
False Repainting not allowed.
True (Default) Repainting allowed
Data Type
Integer (Boolean)
See Also
Performance tuning

CheckItem Property
Description
Specify if item checking is performed or not. Setting this property to

False increases
speed performance.
Important: Setting this property to False requires to be very cautious

when using Item, Org and Dst properties. Setting wrong values to
those properties when CheckItem is False may result in a General
Protection Fault .
Not available at design time
Usage
[form.]NET.CheckItem[= {True | False}]
Settings
The CheckItem Property settings are:
Setting Description
False Item checking is not performed.
True (Default) Item checking is performed
Data Type
Integer (Boolean)
See Also
Performance tuning

Version Property
Description
Returns the version of the EasyNet control currently loaded in memory.
Read only.
Usage
[form.]NET.Version
Data Type
Integer
Remarks
The version number is a three digit integer where the first digit is the

major version number and the last two represent the minor version
number. For example, if current version is 1.60, then this property
returns 160.

Hiding Property
Description
If current item is 0, specify if next created items will be visible or not
If current item is not 0, specify if it is visible or not.
If LoopScope property is True, writing applies to every items involved in a

call to LoopAction property.
Not available at design time
Usage
[form.]NET.Hiding [=    {True | False}]
Settings
The Hiding property settings are:
Setting Description
False (default) The item is visible.
True The item is not visible.
Data Type
Integer (Boolean)
See also
Drawing

ImageFile Property
Description
Sets a file name to which the metafile is written when EditAction is

set to 8.
If a path is not specified, the current directory is used.
Usage
[form.]NET.ImageFile [= filename$]
Data Type
String
Remarks
The appropriate extension (.WMF) is appended automatically.
See also
EditAction

DisplayHandles Property
Description
Specify if handles are displayed. The handles are the little black

squares on the selected item.
Usage
[form.]NET.DisplayHandles[= {True | False}]
Settings
The DisplayHandles Property settings are:
Setting Description
False Handles are not displayed.
True (Default) Handles are displayed.
Data Type
Integer (Boolean)

Zoom Property
Description
Specify a zoom factor which can be a value between 0 and 1000.
Setting it to 0 display the diagram so that it fits in the control area.
Setting it to 100% display the diagram at its normal size.
Setting it to a value higher than 100% expands the diagram
Setting it to a value less than 100% shrinks the diagram.
Usage
[form.]NET.Zoom[= setting]
Data Type
Integer

ItemZOrder Property
Description
Places current item at the front or back of the z-order.
Not available at design time; write only at run time.
Usage
[form.]NET.ItemZOrder    =    setting
Settings
The ItemZOrder property settings are:
Setting Description
0 Send item Front
1 Send item Back
Data Type
Integer
Remarks
If you perform a loop among all items (Net1.LoopAction = 10), items sent

back will be at the beginning of the list whereas items sent front will be at
the end of the list.
See also
Items

Owner Property
Description
If current item is a node, sets or returns its owner node.
If current item is 0 or is a link, writing has no effect and reading returns 0.
If LoopScope property is True, writing applies to every nodes involved in a

call to LoopAction property.
Not available at design time.
Usage
[form.]NET.Owner[= idNode]
Data Type
Long
Remarks

· A node follows its owner. When an owner node is moved, all its
owned
nodes are also moved. This happens only when the user moves
the
node interactively with the mouse (dragging). If the node is
moved
programmaticaly (i.e changing its X1 or Y1 properties), owned
nodes
do not move.

· A node cannot be an owner node if it is owned by another node.
· You can get each owned node of current node with LoopAction

property.
· A node cannot owns itself.
· This property may be used to implement stubs or pins, allowing

a node
to have several owned nodes inside itself and those owned
nodes can
be used as stubs receiving links. For instance, in the following
diagram,
the flat rectangular node is the owner of 4 little nodes used as
stubs.
You may make those little nodes sleeping (see Sleeping
property) so that the user cannot select it, size it or move it.

Change Event
Description
Occurs when a change is made. (For instance, an item is added, moved,

deleted or one of its properties is changed).
Syntax
Sub NET_Change ()
Remarks

· This event is not fired if DoChange property is False.
· Important: Actions that change something in the diagram (i.e.

creating,
deleting or altering one item) should not be used within this
event as
you will encounter unexpected results.

SelChange Event
Description
Occurs when selection is changed.
Syntax

Sub NET_SelChange ()

Remarks
· This event is not fired if DoSelChange property is False.
· Important: Actions that change selection (i.e. using Item

Property)
should not be used within this event as you will encounter
unexpected
results

AddNode Event
Description
Occurs when a node is added.
Syntax
Sub NET_AddNode ()
Remarks

· This event is not fired if DoAddNode property is False.
· Important: Actions that create nodes (i.e. using EditAction

Property) should not be used within this event as you will
encounter
unexpected results.

· Typically, this event allows the user to change a property of the
node
just after its creation and just before it is displayed. For
instance, if you
need fixed size nodes, you have just to give values to X1, X2,
Y1, Y2
properties:

Sub Net1_AddNode ()
      Net1.X2 = Net1.X1 + 500
      Net1.Y2 = Net1.Y1 + 500
End Sub

· In fact when a node is created, three events are generated in the following order:
SelChange
AddNode
Change

AddLink Event
Description
Occurs when a link is added.
Syntax
Sub NET_AddLink ()
Remarks

· This event is not fired if DoAddLink property is False.
· Important: Actions that create links (i.e. using EditAction Property)

should not be used within this event as you will encounter unexpected results.
· Typically, this event allows the user to change a property of the link just after its

 creation and just before it is displayed.
· In fact when a link is created, three events are generated in the following order:

SelChange
AddLink
Change

ErrSpace Event
Description
Occurs when no more memory is available.
Syntax
Sub NET_ErrSpace ()

Registration
The demonstration version of the EasyNet control is FULLY FUNCTIONAL but

may only be used in the development environment. If you generate an EXE
file with this version of the EasyNet control but without an EasyNet license
file, then any attempt to use this EXE file will display a dialog box explaining
that it has been generated without license file and the control will be limited
to 20 items.

If you like EasyNet control then you can receive EasyNet license file by
registering as follows:

1) EITHER in the SWREG forum on Compuserve:

License type | SWREG id | Price |
Single User | 2547 | $ 119 |
3-5 Users | 5487 | $ 350 |
Unlimited User License | 5488 | $ 650 |

Then you will receive the EasyNet license file by Compuserve E-Mail and the
registration fee will be billed to your Compuserve Account. This is a quick and
easy way to register EasyNet.

2) EITHER by ordering with MC, Visa, Amex, or Discover from Public
(software) Library by calling 800-2424-PsL or 713-524-6394 or by FAX to 713-
524-6398 or by CIS Email to 71355,470. You can also mail credit card orders
to PsL at P.O.Box 35705, Houston, TX 77235-5705. Ask for product # 11517.
The cost is $ 122 (includes $3 s&h charge). Then, you will receive the
EasyNet license file on diskette.

Note: THE ABOVE NUMBERS ARE FOR ORDERS ONLY. Please address any
questions to Patrick Lassalle through CIS e-mail.

3) EITHER by completing and sending the Order Form, along with a check
for the amount listed above (plus $3 s&h if a diskette is used instead of E-
Mail)

to:
Patrick Lassalle
247, Avenue du Marechal Juin
92100, Boulogne
FRANCE

          Then, you will receive the EasyNet license file either on diskette or via
E-Mail if possible.

Note: If you want to pay with french currency, prices are the following (plus
FF 15 s&h if a diskette is used instead of E-Mail)
License type | French Price |
Single User | FF 595 |
3-5 Users | FF 1750 |
Unlimited User License | FF 3250 |

Registration benefits.
In return for your registration you receive these benefits:

- a license file giving a royalty-free right to reproduce and distribute the
control file EasyNet.vbx with any application that you develop and
distribute.This license file is not for distribution.
- full product support (via Compuserve) for a period of 12 months.
- the right to use EasyNet in your design environment.

License Agreement
The EasyNet custom control is not public domain or free software.
The EasyNet custom control is copyrighted, and all rights are reserved by

its author: Patrick Lassalle.
Licensing:
1. shareware version
You may use the shareware version of the EasyNet custom control for up to

30 days in your design environment for evaluation purposes only. You may
copy and distribute it freely as long as all the files in the package, including
the demo programs are distributed with it and no changes or additions of any
kind are made to the original package.
2. registered version
As a registered user, you can use the EasyNet custom control in your design

environment and you have a royalty-free right to distribute executables that
use EasyNet as a runtime component. Only registered users can distribute
executables using the EasyNet custom control.

You may copy the software to facilitate your use of it on as many computers
as there are licensed users specified in the EasyNet.lic file. Making copies
for any other purpose violates international copyright laws. In particular, you
are prohibited from distributing a registered version of the EasyNet custom
control, except as a runtime component of one of your applications.
The EasyNet.lic file allows you to compile your applications with the

EasyNet custom control. YOU ARE NOT ALLOWED TO DISTRIBUTE
EASYNET.LIC FILE.
Disclaimer of Warranty:
THIS SOFTWARE AND THE ACCOMPANYING FILES ARE SOLD "AS IS"   

WITHOUT WARRANTY OF ANY KIND EITHER EXPRESSED OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

Good data processing procedure dictates that any program be thoroughly
tested with non-critical data before relying on it.

The user must assume the entire risk of using the program.

Your use of this product indicates that you have read and agreed to
these terms.

EasyNet Order Form    (Select "Print Topic" from the File menu to print this order).

Date of order:                  ______________

SHIPPING ADDRESS

Name __
Company __
Address __

__
__
__

Phone __________________________
FAX __________________________
E_Mail __________________________

PAYMENT ADRESS: Patrick Lassalle
247 , Avenue du Marechal Juin
92100, Boulogne
FRANCE

Please send me the last version of EasyNet Custom Control:

Single User License US $ 119 (or FF 595) x ______
3-5 Users License US $ 350 (or FF 1750) x

Unlimited User License US $ 650 (or FF 3250) x

s & h. (if diskette required) US $ 3 (or FF 15)

TOTAL ______

The diskette contains the EasyNet license file and the EasyNet package in a
zip file.
Those files may be sent via e-mail. In such a case, s & h is not to be included.
All payment must be by check in U.S. funds or French funds.
Please make the check payable to Patrick Lassalle.
Prices and terms subject to change without notice.

Installation
Demonstration version:The files easynet.vbx and easynet.hlp should

be copied in your    WINDOWS\SYSTEM directory.
Registered version:The files easynet.vbx, easynet.hlp and easynet.lic

should be copied in your    WINDOWS\SYSTEM directory.
Distribution note:    When you create and distribute applications that use

the EasyNet control you should install the file easynet.vbx in the customer's
Microsoft Windows \SYSTEM subdirectory. The Visual Basic Setup Kit included
with the Professional VB product provides tools to help you write setup
programs that install you applications correctly.
You are not allowed to distribute easynet.lic file with any application that

you distribute.

Support
EasyNet support can be obtained

· via Compuserve: 100325,725
· via Internet.: 100325.725@compuserve.com
· at the address indicated in Registration

Thanks in advance for your feedbacks or questions!

Acknowledgments
Many people have helped make EasyNet what it is, but in particular I'd like

to thank the following individuals:
-    Gils Gayraud for making good suggestions and his amazing ability to find

bugs.
-    Michel Lassalle for extensive help testing EasyNet.
-    Jeff Simms (author of VBCTL3D.VBX) for its help about license file

management.

